Study on the Volumetric Behavior of Base Oils, Brines, and Drilling Fluids Under Extreme Temperatures and Pressures

Author:

Zamora Mario1,Roy Sanjit1,Slater Kenneth1,Troncoso John1

Affiliation:

1. M-I SWACO, a Schlumberger company

Abstract

Summary Drilling-fluid densities vary significantly over wide ranges of temperature and pressure, a concern that is particularly critical in deepwater, Arctic, and high-pressure/high-temperature. The variations can affect well integrity, well design, regulatory compliance, and drilling efficiency. Drilling-fluid densities depend on the compressibility and thermal expansion of the fluids (liquids) and solids used in their formulation. Suitable pressure/volume/temperature (PVT) correlations for these fluids previously have been fairly inaccessible, primarily because of continually changing base fluids and blends, and the lack of readily available test equipment. This study was conducted to measure the volumetric behavior under extreme temperatures and pressures of a broad range of the oils, synthetics, and brines currently used in industry to prepare oil-, synthetic-, and water-based drilling fluids. It follows a recent study that successfully qualified the commercially available test equipment. For the most part, tests for this study were run at temperatures from 36 to 600°F and pressures from atmospheric to 30,000 psi, ranges that generally exceed those provided in other published studies. Correlation coefficients are provided for reference and to demonstrate their use in a compositional, material-balance model to accurately predict drilling-fluid density as a function of temperature and pressure. Tests run on field drilling fluids are included to demonstrate how these data can be used in procedures and software to predict equivalent static density and hydrostatic pressure during drilling operations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3