Optimizing Longitudinal Fracture Design for Horizontal Well Completions in Laminated Sandstone Reservoirs

Author:

Zhang Junjing1,Zwarich Nola1,Burton Robert1,Carman Paul1,Davis Eric1,Nozaki Manabu1,Buck Brian1,Lewis Adam1,Wendt Brett1

Affiliation:

1. ConocoPhillips

Abstract

Abstract Horizontal wells with multi-stage longitudinal fractures have been widely used to develop low-to-moderate permeability sandstone formations in enhanced oil recovery schemes. A long-held misconception exists that high fracture conductivity is not essential to well productivity for longitudinal fractures in openhole completions because the pressure drop through the fracture is small due to the geometry. This study provides workflows to optimize longitudinal fracture design for horizontal well completions on the North Slope of Alaska and presents practical considerations that challenge this misconception. Mechanical properties of core samples across the reservoir interval were evaluated by hardness-based strength calculators and tri-axial compression tests. Based on the rock strength profile, candidate intervals were selected for fracture conductivity measurements. Both summer (low salinity) and winter (high salinity) seawater based fracturing fluids were injected through the propped fracture cell containing both sandstone and mudstone lithologies. Numerical fracture models were built and matched to bottomhole pressures acquired during project appraisal well stimulations. Proppant concentration distribution along the fracture was generated for different design scenarios by varying proppant volume, proppant size, pump schedule, etc. The impact of various design scenarios on well production was also investigated. Full alignment between the fracture plane and the wellbore results in the highest productivity for fractured horizontal wells with openhole completions. However, calculations demonstrate that even a few degrees of misalignment between horizontal well orientation and the maximum horizontal principal stress results in fracture deviation from the open hole. Due to flow along the fracture and convergence from the fracture to the wellbore, fracture conductivity dominates the pressure drop and completion skin factor for this geometry. Since actual fracture conductivities in wells on the North Slope of Alaska are not infinite, it is therefore inappropriate to use "infinitely-acting" fracture assumptions as has often been used historically for longitudinally fractured horizontal wells with openhole completions. Fracture conductivity tests show severe conductivity loss due to gel residue as well as mudstone and seawater interactions. Realistic discount factors for fracture conductivities in the targeted shallow sandstone-mudstone formations were developed for subsequent reservoir studies. Modeling results suggest that larger job sizes and bigger proppant are needed to achieve desirable skin factors and well inflow performance when the fracture becomes misaligned from the wellbore.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3