Improving Sucker Rod Pump Performance and Overall Production After Applying Continues Steam Injection in Heavy Oil Project-North Kuwait

Author:

AbdulHadi Fahd1,Al-Ajeel Fatemah1,Sierra Tomas2,Mohamed Assem2,Heshmat Kareem2

Affiliation:

1. Kuwait Oil Company

2. Weatherford Kuwait

Abstract

Abstract The manuscript focuses on benefits realized in sucker rod pump system performance, number of workovers, downtime periods, and overall production efficiency as a result of continuous steam injection (steam flooding) on a heavy oil pilot field. It also presents benefits on production performance as a result of real-time well optimization of sucker rod pump systems. Implementation of real-time production optimization techniques to record behavioral changes provide for up-close field operational surveillance (allowing for faster response time). The steam injection effect varies from between locations, based on the distance between injector and producer wells, along with the degree of down-hole interference. The objective was to study steam injection effects on a group of wells and adjust the operational parameters of sucker rod pump systems based on individual well performance conditions. Real-time wellsite monitoring (including creating notifications, warnings and alarms to identify troublesome or non-optimized wells) and data-trend analysis allowed us to make necessary corrective actions continuously, which led to an improvement in well performance since steam injection started (thus optimizing productivity). The continuous steam injection, supported by real-time optimization and constant sucker rod pump system performance adjustments, led to the following operational efficiency improvements: Reduced downtime related to troubleshooting activitiesReduced pump replacements (obtaining longer run life of downhole equipment)Improved pump efficiency (measured by improvements in production rates)Created a workflow for sucker rod pump system performance review and optimization opportunitiesImproved field-wide overall productionImprovement in sucker rod pump system efficiency (pump efficiency dyna card analysis was significantly improved in wells with low pump submergence after steam injection) Maintaining the same downhole pump configuration, we found that pump efficiency (calculated by measured production rates) changed significantly: from low efficiency before steam injection (on colder periods) to higher efficiency (after steam injection). We also studied pump performance during the production phase and adapted the sucker rod pump system operational parameters to the wellbore's changing operation conditions, driven mainly by wellbore's temperature changes. Applying continuous steam injection in a heavy oil area supported in improving pump performance, reducing downtime, and improving overall production from a specific number of wells, compared to lower production and higher downtimes (with larger number of wells), but without continuous steam injection.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3