Analysis of Evolutionary Algorithm and Discrete Cosine Transformation Components Influence on Assisted History Matching Performance

Author:

Al-Jenaibi Faisal1,Shelepov Konstantin2,Kuzevanov Maksim2,Gusarov Evgenii2,Bogachev Kirill2

Affiliation:

1. ADNOC - Upstream

2. Rock Flow Dynamics

Abstract

Abstract The application of intelligent algorithms that use clever simplifications and methods to solve computationallycomplex problems are rapidly displacing traditional methods in the petroleum industry. The latest forward-thinking approaches inhistory matching and uncertainty quantification were applied on a dynamic model that has unknown permeability model. The original perm-poro profile was constructed based on synthetic data to compare Assisted History Matching (AHM)approach to the exact solution. It is assumed that relative permeabilities, endpoints, or any parameter other than absolute permeability to match oil/water/gas rates, gas-oil ratio, water injection rate, watercut and bottomhole pressure cannot be modified. The standard approach is to match a model via permeability variation is to split the grid into several regions. However, this process is a complete guess as it is unclear in advance how to select regions. The geological prerequisites for such splitting usually do not exist. Moreover, the values of permeability and porosity in different grid blocks are correlated. Independent change of these values for each region distortscorrelations or make the model unphysical. The proposed alternative involves the decomposition of permeability model into spectrum amplitudes using Discrete Cosine Transformation (DCT), which is a form of Fourier Transform. The sum of all amplitudes in DCT is equal to the original property distribution. Uncertain permeability model typically involves subjective judgment, and several optimization runs to construct uncertainty matrix. However, the proposed multi-objective Particle Swarm Optimization (PSO) helps to reduce randomness and find optimal undominated by any other objective solution with fewer runs. Further optimization of Flexi-PSO algorithm is performed on its constituting components such as swarm size, inertia, nostalgia, sociality, damping factor, neighbor count, neighborliness, the proportion of explorers, egoism, community and relative critical distance to increase the speed of convergence. Additionally, the clustering technique, such as Principal Component Analysis (PCA), is suggested as a mean to reduce the space dimensionality of resulted solutions while ensuring the diversity of selected cluster centers. The presentedset of methodshelps to achieve a qualitative and quantitative match with respect to any property, reduce the number of uncertainty parameters, setup ageneric and efficient approach towards assisted history matching.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3