A Systematic Method for Reducing Surfactant Retention to Extremely Low Levels

Author:

Jang Sung Hyun1,Liyanage Pathma Jith1,Tagavifar Mohsen1,Chang Leonard1,Upamali Karasinghe A.1,Lansakara-P Dharmika1,Weerasooriya Upali1,Pope Gary A.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract The chemical cost to recover an incremental barrel of oil is directly proportional to the surfactant retention, so the single most effective way to reduce the cost is to reduce surfactant retention. The main objective of this research was to demonstrate how surfactant retention could be reduced to almost zero by careful optimization of the chemical formulations for different crude oils. Although surfactant retention has been studied for many years over a wide range of reservoir conditions, its dependence on the rheological behavior of the microemulsion that forms in-situ has not been adequately studied. Thus, in this paper we emphasize the importance of microemulsion rheology and demonstrate how to develop and test formulations with properties that give very low surfactant retention. Novel co-solvents (iso-butanol (IBA) alkoxylates and phenol alkoxylates) were tested in some of the formulations with excellent results. Unlike classical co-solvents used to optimize chemical formulations, the new co-solvents cause only a slight increase in the interfacial tension. A series of ASP corefloods were performed in sandstone cores with and without oil to measure surfactant and co-solvent retention and to elucidate the effects of microemulsion viscosity, salinity gradient, clay content, surfactant concentration and other variables. Dynamic adsorption was measured in cores with the same mineralogy and compared with the retention from oil recovery corefloods to determine the component of the retention due to phase trapping.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3