Alkaline/Surfactant/Polymer Processes: Wide Range of Conditions for Good Recovery

Author:

Liu Shunhua1,Li Robert Feng2,Miller Clarence A.2,Hirasaki George J.2

Affiliation:

1. Occidental Oil and Gas Corporation

2. Rice University

Abstract

Summary Design of an alkaline/surfactant/polymer (ASP) process requires knowledge of the amount of soap formed under alkaline conditions from naphthenic acids in the crude oil. We show here for several crude oils that, when substantial acid is present, the acid number determined by nonaqueous-phase titration is approximately twice that found by hyamine titration of a highly alkaline aqueous phase used to extract soaps from the crude oil. This acid number by soap extraction should provide a better estimate than nonaqueous-phase titration because the extracted soap interacts with the injected surfactant to form surfactant films and microemulsion droplets during an ASP process. In a previous paper (Liu et al. 2008), an unusually wide range of salinities of ultralow oil/water interfacial tensions (IFTs) was found for one alcohol-free crude-oil/anionic-surfactant system under alkaline conditions where naphthenic soaps were present. Solubilization results indicate that this favorable behavior exists with the same surfactant blend and another crude oil. In the same paper, a 1D simulator for the ASP process was presented. Here, this ASP simulator has been used for various acid contents, injected-surfactant concentrations, slug sizes, and salinities to show that high recoveries of waterflood residual oil (> 90%) can be expected for a wide range of near-optimal (Winsor III) and underoptimum (Winsor I) conditions for a constant-salinity process, even with relatively small slug sizes. A key factor leading to this good performance is development of a gradient in soap/surfactant ratio, which ensures that a displacement front with ultralow IFT forms and propagates through the formation. Similar high recoveries can be attained for certain Winsor II conditions but only for much larger slug sizes, owing to the tendency for surfactant to partition into the oil phase and become retarded. Large dispersion, such as might be expected for field conditions, can reduce recovery significantly for small surfactant slugs even for near-optimal and underoptimum conditions. However, this problem can be overcome by injecting the slug or drive at salinities below reservoir salinity, thereby creating a salinity gradient.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3