A Semianalytical Forecasting Method for Unconventional Gas and Light Oil Wells: A Hybrid Approach for Addressing the Limitations of Existing Empirical and Analytical Methods

Author:

Clarkson C.R.. R.1,Qanbari F..1

Affiliation:

1. University of Calgary

Abstract

Summary The rapid pace of exploitation of unconventional gas and light oil plays in North America has necessitated the development of new production-forecasting methodologies to aid in reserves assessment, capital planning, and field optimization. The generation of defendable forecasts is challenged not only by reservoir complexities but also by the use of multifractured horizontal wells (MFHWs) for development. In this work, a semianalytical method (SAM) is developed to provide a solid theoretical basis for forecasting. The technique is analytical in that it uses the methods of Agarwal (2010) to calculate contacted oil in place and contacted gas in place (COIP/CGIP) from production rates, flowing pressures, and fluid properties. The rate-normalized pressure (RNP) derivative (RNP′) is a key component of the calculation; pseudopressure is used for gas cases. The technique is also empirical in that an empirical function is fitted to the resulting COIP/CGIP curve vs. time. Although the method is flexible enough that any equation can be used to represent the COIP/CGIP curve, and hence, the sequence of flow regimes exhibited by MFHWs, the equation must be capable of being integrated to allow the extraction of RNP. The stabilized COIP/CGIP during boundary-dominated flow (BDF) must be specified for forecasting—thereafter, the method uses a material-balance simulator to model BDF. Hence, if the well is still in transient flow, a range in forecasts may be generated, depending on the assumed stabilized COIP/CGIP. The new SAM addresses some of the current limitations of empirical and fully analytical (modeling) approaches. Empirical methods, which have been adapted to account for long transient and transitional flow periods associated with ultralow-permeability reservoirs, lack a theoretical basis, and therefore input parameters may be difficult to constrain. However, empirical methods are simple to apply and require a minimum amount of data for forecasting. Analytical models, while representing the physics better, nonetheless require additional reservoir and hydraulic-fracture data that may not be available on every well in the field. The SAM proposed herein is intended to bridge the gap between empirical and modeling-based approaches—it is more rigorous than purely empirical methods, while requiring a lesser amount of data than fully analytical techniques. The new method is tested against simulated and field cases (tight oil and shale gas). Although a simple power-law function is used in the current work to represent the COIP/OGIP curve, which appears adequate for the cases studied, one should note that wells exhibiting long transitional flow periods (e.g., elliptical/radial) will likely require a different functional form.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3