Early Stuck Pipe Sign Detection with Depth-Domain 3D Convolutional Neural Network Using Actual Drilling Data

Author:

Tsuchihashi Naoki1,Wada Ryota2,Ozaki Masahiko1,Inoue Tomoya3,Mopuri Konda Reddy4,Bilen Hakan4,Nishiyama Tazuru5,Fujita Kazuhiro6,Kusanagi Kazuya7

Affiliation:

1. University of Tokyo

2. University of Tokyo (Corresponding author; email: r_wada@k.u-tokyo.ac.jp)

3. Japan Agency for Marine-Earth Science and Technology

4. University of Edinburgh

5. Japan Petroleum Exploration Co., Ltd.

6. INPEX Corporation

7. Japan Oil, Gas and Metals National Corporation

Abstract

Summary A real-time stuck pipe prediction using the deep-learning approach is studied in this paper. Early signs of stuck pipe, hereinafter called stuck, are assumed to show common patterns in the monitored data set, and designing a data clip that well captures these features is critical for efficient prediction. With the valuable input from drilling engineers, we propose a 3D-convolutional neural network (CNN) approach with depth-domain data clip. The clip illustrates depth-domain data in 2D-histogram images with unique abstraction of the time domain. Thirty field well data prepared in multivariate time series are used in this study—20 for training and 10 for validation. The validation data include six stuck incidents, and the 3D-CNN model has successfully detected early signs of stuck in three cases before the occurrence. The portion of the data clip contributing to anomaly detection is indicated by gradient-weighted class activation map (grad-CAM), providing physical explanation of the black box model. We consider such explanation inevitable for the drilling engineers to interpret the signs for rational decision-making.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3