A Novel Downhole Gas Separator in ESP Systems

Author:

Wang Qinghua1,Liu Yonghui2,Yang Junzheng1,Cui Mingyue1,Qi Dan1

Affiliation:

1. RIPED PetroChina

2. Southwest Petroleum University

Abstract

Abstract For Electrical Submersible Pump (ESP) systems in high-GLR wells, presence of gas inside ESP results in the degradation of hydraulic head. As a remedial tool to improve the ability of handling gas-liquid mixtures, Downhole Gas Separator (DGS) is of crucial importance. However, conventional DGS has limited capability in separating free gas and a maximum separating efficiency of 45%. It can't meet the field applications to a wider range of flow conditions and different pump models. Therefore, the paper proposed a solution to improve gas handling ability of DGS to expand its application. Combining centrifugal separation method and gravity separation method, three-annular design was proposed to address the problem of two-stage separator with fairly long length. In the new design, a device is used to accelerate the fluid for higher velocity flowing into the annular between the spiral outer pipe and the central pipe. Then, the helical blades in the annular separate the gas-liquid mixture, leading gas attaching on the out wall of the central pipe and subsequently discharge into casing through the vent holes. The liquid attached on the inner wall of the spiral outer pipe flows reversal because of gravity. Afterwards, liquid is forced into the central pipe through the drainage holes and then flow into the ESP. In order to improve separating efficiency, the structure of helical blades, including distance and number of thread for centrifugal separator was then optimized by numerical simulation. In addition, an experimental study was conducted in different GLR and deviation. The experimental results show separating efficiency ranges between 88% and 96% while the conventional is under 60%. Furthermore, the separation efficiency decreases with the increasing of deviation, and maximum deviation of the new separator can be applied is 50°[1]. The novel DGS provide an economic solution for ESP application in gassy reservoir with low cost and power; since the new design greatly shorten the length of traditional two-stage separator.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3