Novel Non-Aromatic Non-Ionic Surfactants to Target Deep Carbonate Stimulation

Author:

Sokhanvarian Khatere1,Stanciu Cornell1,Fernandez Jorge M.1,Ibrahim Ahmed2,Nasr-El-Din Hisham A.2

Affiliation:

1. Sasol Performance Chemicals

2. Texas A&M University

Abstract

Abstract Matrix acidizing is used for permeability and productivity enhancement purposes in oil and gas wells. Hydrochloric acid has been always a first choice due to so many advantages that it can offer. However, HCl in high pressure/high-temperature (HP/HT) wells is a concern because of its high reactivity resulting in face dissolution, high corrosion rates, and high corrosion inhibition costs. There are several alternatives to HCl, among them emulsified acid is a favorable choice due to inherent corrosion inhibition, deeper penetration into the reservoir, less asphaltene/sludge problems, and better acid distribution due to its higher viscosity. Furthermore, the success of the latter system is dependent upon the stability of the emulsion especially at high temperatures. The emulsified acid must be stable until it is properly placed and it also should be compatible with other additives in an acidizing package. This study presents the development of a stable emulsified acid at 300°F through investigating some novel aliphatic non-ionic surfactants. This paper introduces new non-aromatic non-ionic surfactant to form an emulsified acid for HP/HT wells where the conventional acidizing systems face some shortcomings. The type and quality of the emulsified acid was assessed through conductivity measurements and drop test. Thermal stability of the system was monitored as a function of time through the use of pressure tubes and a preheated oil bath at 300°F. Lumisizer and Turbiscan were used to determine the stability and average particle size of the emulsion, respectively. The viscosity of the emulsified acid was measured at different temperatures up to 200°F as a function of shear rates (0.1-1000 s-1). The microscopy study was used to examine the shape and distribution of acid droplets in diesel. Coreflood studies at low and high flow rates were conducted to determine the performance of the newly developed stable emulsified acid in creating wormholes. Inductively Coupled Plasma (ICP) and Computed Tomography (CT) scan were used to determine dissolved cations and wormhole propagation, respectively. Superior stimulation results with low pore volume of acid to breakthrough were achieved at 300°F with the newly developed emulsified acid system. The wormhole propagation was narrow and dominant compared to branch wormholes resulted from some of the treatments using conventional emulsified acid systems. The results showed that a non-ionic surfactant with a right chemistry such as suitable hydrophobe chain length and structure can form a stable emulsified acid. This study will assist in creating a stable emulsified acid system through introducing the new and effective aliphatic non-ionic surfactants, which lead to deeper penetration of acid with low pore volume to breakthrough. This new emulsified acid system efficiently stimulates HP/HT carbonate reservoirs.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3