A Novel Single-Stage Sandstone Acidizing Fluid

Author:

Zhao Haiyan1,Ziauddin Murtaza1,Abivin Patrice1,Yusuf Temiloluwa1,Karazincir Oya2,Williams Wade2,Comeaux Bruce2

Affiliation:

1. Schlumberger

2. Chevron

Abstract

Abstract Sandstone acidizing operations usually include solvent and acid preflush, main acid treatment, and post-flush stages. However, the acid preflush stage needs good design and execution to prevent formation damage. Moreover, multiple-stage operations require large-volume fluids and pumping time. Therefore, it is challenging to stimulate sandstone formations, especially those with high clay and carbonate content. A novel single-stage acid has been developed to overcome these challenges and improve the stimulation success rate in a cost-effective manner. The application of the new acid system has been studied in laboratory testing. Core flow tests were performed to evaluate the stimulation performance with Berea Gray and Bandera Gray from 160° to 300°F. An inductively coupled plasma (ICP) instrument was used to analyze the ions in the spent acid effluent. The performance was compared with mud acid and organic mud acid. The acid-rock reactions were studied by batch reactor tests. Compatibility with crude oil and mutual solvent was also tested. The results of core flow tests have shown that the new acid was used to treat the sandstone cores effectively at temperatures from 160° to 300°F. The regained permeability range varies from 115% to 400% under different conditions. The new acid provided similar or better performance compared with the combination of acid preflush and mud acid or organic mud acid. High concentrations of Al and Si were observed in the spent acid effluents by ICP analysis, indicating the high dissolution capacity of clays by the new acid. The new acid is highly compatible with carbonate, which was supported by the high concentrations of Ca and Mg in the spent acid. Both core flow tests and batch reactor tests have shown that the new acid stabilizes the problematic ions (Al, Ca, Mg and Fe) in the spent acid. The new acid is compatible with mutual solvent from the core flow tests; therefore, the mutual solvent preflush can be eliminated. The new acid also has good corrosion control due to the relatively high pH compared with mud acid. Overall, the new single stage acid has been used to stimulate the sandstone cores successfully without acid preflush and solvent preflush. A differentiating characteristic of the fluid is that it greatly reduces the risk of treatment failure by reducing primary, secondary, and tertiary precipitation, while maintaining high dissolving power for clays. It uses a different, more cost-effective chemical pathway to stabilize problematic ions compared to traditional single-step sandstone acidizing systems. The new fluid simplifies operation by reducing the total treatment fluid volume, the total number of fluid stages, and the number of fluid types needed at the wellsite.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3