Disposable Fibre Optic Surveys Optimise Wells and Reduce CO2 Emissions in Unconventional Assets

Author:

Crawford R.1,Green A.2,Lynch P.2,Feherty C.2

Affiliation:

1. Well-Sense Technology Ltd, Perth, Australia.

2. Well-Sense Technology Ltd, Aberdeen, Scotland.

Abstract

Abstract The large quantity of batch wells typical in unconventional fields results in per well incremental optimisation gains compounding and significantly improving asset economics. A disposable, cost effective, fibre optic intervention system safely and efficiently provides high quality data to optimise completion design and hydraulic fracturing, calibrate reservoir models and inform future well design. CO₂ efficiency estimates and technology applications in unconventional fields including Vertical Seismic Profiling (VSP), cement cure analysis and hydraulic fracture optimisation are outlined. The upper end of one or two bare fibre optic cables are fixed inside a light-weight pressure control cap, while the downhole ends are deployed along the wellbore as they unspool from a disposable probe which is pumped along horizontal sections. Distributed Acoustic Sensing (DAS) is used for seismic and micro-seismic fracture analysis, whereas Distributed Temperature Sensing (DTS) is used to monitor well and near wellbore fluids. The high-quality data is used both in real time and subsequent enhanced analysis with disposable fibre having been successfully deployed in over 200 unconventional wells. The high level of acoustic and strain coupling as well as the elevated sensitivity of disposable bare optic fibre produce high quality data, with recent studies favourably comparing disposable fibre data with that obtained by retrievable fibre optic intervention. When compared with well monitoring methods utilising Wireline or Coiled Tubing, the disposable fibre system is extremely light weight with a micro footprint, requires only one person to deploy, has static seals, and does not require a BOP. The result is a low risk, efficient, method of highly sensitive, complete wellbore, fibre optic sensing. The transportation weight saving, reduced survey time, power consumption and reduced personnel requirements result in significant operational CO₂ reductions. Examples of unconventional well VSP, cement cure analysis, well integrity and fracture optimisation applications demonstrate efficiency gains and impact on asset economics. Unconventional field lifecycle applications of a new disposable fibre optic system are presented along with field optimisation and economic benefits. In addition, an example operation illustrating comparative CO₂ emissions for a hydraulic fracture monitoring application demonstrates disposable fibre CO₂ emissions at 8% of comparable wireline operations.

Publisher

SPE

Reference20 articles.

1. Alupro (2021). Carbon Footprint of Aluminium Fact Sheet. https://alupro.org.uk/sustainability/fact-sheets/carbon-footprint/ (Accessed 8 August 2023)

2. Australian Bureau of Statistics (2012). Profiles of Health, Australia, 2011-2013. https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4338.0main+features212011-13 (Accessed 6 August 2023)

3. Barhaug, J., Bussey, J., Schaeffer, B., Shemeta, J., Lawrence, M., Tran, J., Stark, P. (2022). Testing XLE For Cost Savings in the DJ Basin: A Fiber Optic Case Study. Paper presented at SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, February 1-3, SPE-209155-MS https://doi.org/10.2118/209155-MS.

4. Brown, G. A., Kennedy, B., Meling, T. (2000). Using Fibre-Optic Distributed Temperature Measurements to Provide Real-Time Reservoir Surveillance Data on Wytch Farm Field Horizontal Extended-Reach Wells. Paper presented at theSPE Annual Technical Conference and Exhibition, Dallas, Texas, October 2000. https://doi.org/10.2118/62952-MS.

5. Ember (2023). Yearly Electricity Data, August 3rd. https://ember-climate.org/data-catalogue/yearly-electricity-data/ (Accessed 18 August 2023)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3