Proper Evaluation of Shale Gas Reservoirs Leads to a More Effective Hydraulic-Fracture Stimulation

Author:

Kundert Donald P.1,Mullen Michael J.1

Affiliation:

1. Halliburton Energy Services

Abstract

Abstract Shale-gas formations are currently being explored in the Rocky Mountain region from Montana to New Mexico. These shale- gas formations include the Cody, Hilliard, Baxter, Mancos, Gothic, Pierre, Lewis, and others. Whether the well is drilled vertically or horizontally, shale-gas wells need to be hydraulically fracture-stimulated to produce commercial amounts of natural gas. Because each shale play has unique attributes, a systematic approach to well construction, data collection, and prefrac diagnostics is an essential component in the quest for the most effective hydraulic-fracture stimulation and the best chance to achieve commercial gas production. The first step in the process is a thorough understanding of the shale's petrophysical attributes. Coupling openhole wireline-log information with laboratory measurements of core or cutting samples provides a basis to calibrate the petrophysical model that describes essential geomechanical and geochemical characteristics of the shale. With a calibrated petrophysical log-analysis model, a basic openhole, wireline-log suite consisting of a gamma ray, porosity, and resistivity is a useful evaluation tool. The inclusion of additional wireline measurements, like the spectral gamma ray, microlog, dipole sonic, and electrical borehole-image logs, will further enhance the description of the shale. Core testing can determine Young's Modulus, Poisson's Ratio, Brinell hardness, total organic carbon, kerogen type, gas content, mineral composition, fluid sensitivity, and acid solubility. The end result of this mating of logs and core data is a model that provides an understanding of the mineralogy, mechanical rock properties, britteleness, organic content, and natural fractures of the shale. The next component of the process is to use all the petrophysical analysis and tribal knowledge (current known information) to design the hydraulic-fracture treatment and select the completion intervals. Completion intervals are first selected on the basis of the brittle zones and the zones that will most likely serve as frac barriers. The selection and volumes of the appropriate fracturing fluid and proppant is based on the shale brittleness, geomechanical, and geochemical properties. The final step is to close the loop by evaluating the overall effectiveness of the stimulation treatment. This is accomplished by doing a detailed postjob treatment-pressure analysis. Microseismic mapping during the hydraulic frac treatment is also a valuable technique to evaluate the effectiveness of the frac job. The goal of this systematic process is to shorten the "ideal" frac learning cycle and provide a framework for moving into frontier areas and new shale plays. Introduction In recent years, natural-gas production from shale has become of increasing interest in the quest for future energy supplies. Throughout the last 40 years, the petroleum industry has progressed from conventional gas reservoirs, to tight gas reservoirs, to ultra-low matrix permeability unconventional shale-gas reservoirs. Each type of reservoir has presented its own unique challenges, but it is especially difficult to coax commercial quantities of hydrocarbons from shale reservoirs. The matrix permeability of the reservoir of interest has gone from millidarcies (conventional), to microdarcies (tight gas), to nanodarcies (shale). It then becomes essential for the prospective shale-gas reservoir to have enhanced permeability beyond the matrix permeability, usually in the form of existing natural fractures. Even with enhanced permeability from natural fractures, a well-designed hydraulic-fracturing program is needed to provide successful production results.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3