Concerns and Clarifications for Drilled Uncompleted (DUC) Wells in the Williston Basin

Author:

Srinivasan Karthik1,Krishnamurthy Jayanth1,Kaufman Peter1

Affiliation:

1. Schlumberger Technology Corporation

Abstract

Summary The recent slump in oil prices has resulted in new terminology: “drilled uncompleted wells,” often referred to as DUC wells by the industry. In 2013 and 2014, when oil prices were more than USD 100/bbl, rate of return (ROR) from most unconventional plays was in the range of 15 to 50%, depending on the quality of rock and the operator's portfolio in the basin. The objective of this paper is to address key challenges associated with DUC completions when they are eventually fractured and brought on line for production. The paper addresses four main concerns that can have significant impacts on productivity of DUC wells: fracture hits (well interference), reservoir quality (hydrocarbon drainage), multiple horizons (zone connectivity), and well spacing (high-density drilling). The paper also showcases case studies in which real-time observations made from wells have been used to validate predictions from forward-looking fracture and production models. First, fracture hits commonly have been observed in all unconventional plays throughout the US, with effects on offset wells being mixed. Some fracture hits result in a positive uptick in production in offset wells, whereas other fracture hits affect production negatively in the form of increased water cut, reduced wellhead pressure, and other responses. Understanding fracture hits and their influence on other wells is very critical to avoid any detrimental impacts or to leverage positive effects on production. Second, reservoir quality decides how much oil in place is available for the DUC wells to drain, which, in turn, depends on length of production history and parent-well-completion geometries in offset wells. Third, in basins where there are multiple producing horizons or formations, fracture-height growth and interference between adjacent formations can result in asymmetric fracture propagation toward depleted zones. The longer these wells completed in the same/adjacent formations have been on production, the greater the extent of asymmetry will be. Addressing this concern requires a good understanding of drainage patterns from offset wells and evaluation of their impact on fracture geometries in DUC wells. Last, in areas with high-density drilling, a combination of longer production and fracturing stages with multiple perforation clusters per stage can leave very little oil available for the DUC well to produce.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Support of the Oilfield Service in the Russian Federation;Studies on Russian Economic Development;2021-09

2. All the DUCs in a Row: Natural Gas Production in U.S.;The Energy Journal;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3