Optimization of Multiple Transverse Hydraulic Fractures in Horizontal Wellbores

Author:

Meyer Bruce R.1,Bazan Lucas W.2,Jacot R. Henry3,Lattibeaudiere Michael G.4

Affiliation:

1. Meyer & Associates, Inc.

2. Bazan Consulting, Inc.

3. Atlas Energy Resources, LLC

4. Rosetta Resources, Inc.

Abstract

Abstract Hydraulic fracturing and horizontal drilling are the two key technologies that have made the development of unconventional shale formations economical. Hydraulic fracturing has been the major and relatively inexpensive stimulation method used for enhanced oil and gas recovery in the petroleum industry since 1949. The multi-stage and multicluster per stage fracture treatments in horizontal wellbores create a large stimulated reservoir volume (SRV) that increases both production and estimated ultimate recovery (EUR). This paper presents a new analytical solution methodology for predicting the behavior of multiple patterned transverse vertical hydraulic fractures intercepting horizontal wellbores. The numerical solution is applicable for finite-conductivity vertical fractures in rectangular shaped reservoirs. The mathematical formulation is based on the method of images with no flow boundaries for symmetrical patterns. An economics procedure is also presented for optimizing transverse fracture spacing and number of fracture stages/clusters to maximize the Net Present Value (NPV) and Discounted Return on Investment (DROI). The advantages of this approximate analytical production solution for multiple finite-conductivity vertical transverse fractures in horizontal wells and corresponding optimization procedure include: 1) the solution is based on fundamental engineering principles, 2) the production and interference of multiple transverse fractures are predicted to a first-order, and 3) it provides the basis for optimizing fracture and cluster spacing based on NPV and DROI, not just initial production rate. The methodology provides a simple way to predict the production behavior (including interaction) and associated economics of multi-stage/multi-cluster transverse fracture spacing scenarios in horizontal wellbores. The high initial production (IP) rates from multiple transverse fractures and the late time production decline as a result of fracture interference is discussed. Numerous examples are presented illustrating the method for optimizing (maximizing NPV and DROI) multiple transverse vertical hydraulic fractures in horizontal wellbores. Application of this technique will help provide the design engineer with a better tool for designing and optimizing multi-stage/multi-cluster transverse hydraulic fractures in horizontal wellbores. The governing production equations and fundamental procedure for NPV and DROI optimization of transverse fractures in a horizontal wellbore are discussed.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3