Improving Casing Wear Prediction and Mitigation Using a Statistically Based Model

Author:

Mitchell Sarah1,Xiang Yanghua2

Affiliation:

1. WWT International

2. Pegasus Vertex International

Abstract

Abstract Wells are now routinely drilled both in deepwater and on land to depths that were previously considered impossible. In these environments, casing design is critical to safely and successfully drilling and producing wells, and unexpected casing wear can result in significant costs or even the loss of a well. As part of a successful casing design strategy, the engineer must assess the maximum permissible casing wear required to maintain casing integrity. Then, steps must be taken to ensure that casing wear thresholds are not exceeded. Casing wear models use the number of drill string revolutions and contact force between the drill pipe and casing to calculate wear. The contact force is calculated using the dog-leg severity within the well, with the maximum dog-leg severity often determining the location and extent of the most severe casing wear. There is often a large discrepancy between predicted and actual casing wear because of survey quality and inaccurate estimates of dog-leg severity and total revolutions. These discrepancies result in predictions of contact force and drill string revolutions that are in error by 50% or more. To improve the accuracy of casing wear models, an extensive database was created from a wide variety of wells with measured depths greater than 13,000ft. The database results in a statistically based model for determining dog-leg severity within vertical, build, and tangent sections, as well as total drill string revolutions at various levels of confidence to bound average and maximum expected contact force and casing wear. Case histories compare measured wear with predictions of casing wear based on original well data and the statistically based model. The case histories also demonstrate the effect of various drilling parameters on casing wear, and evaluate the effectiveness of non-rotating protectors in preventing casing wear.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3