Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition

Author:

Gonzalez Doris L.1,Mahmoodaghdam Elham1,Lim Frank2,Joshi Nikhil3

Affiliation:

1. Schlumberger Oilphase-DBR USA

2. Anadarko Petroleum Corporation

3. Moulinex Business Services LLC.

Abstract

Abstract Conventional primary and secondary water flooding of Deepwater Gulf of Mexico (GOM) reservoirs typically result in substantial un-recovered oil providing an attractive target for enhanced oil recovery (EOR) processes. One of the challenges of applying EOR gas injection in these offshore reservoirs is the h igh oil asphaltene content. Anadarko Petroleum Corporation and Schlumberger have jointly investigated the effects of gas addition on the phase behavior of oil, especially its effect on asphaltene precipitation and deposition. The study focuses on the experimental results from various tests showing the instability of asphaltenes in oil from various gas injection scenarios. Three common EOR injection gases: nitrogen (N2), carbon dioxide (CO2) and methane (CH4) were studied. N- heptane was (n-C7) also included for comparison of solids phase behavior during depressurization. Most asphaltene laboratory testing use n-C7 at ambient conditions, whereas asphaltene precipitation occurs with change in pressure and temperature during reservoir depletion processes. The study collected PVT and flow assurance data for original live fluid and for additions of N2, CO2, CH4 and n- C7 at high pressure and temperature conditions. Measurements include asphaltene onset pressure (AOP), saturation pressure (Pb), swelling tests and asphaltene deposition tests. Other basic measurements of the corresponding dead oil include SARA analysis, viscosity, density and fluid characterization. Fluids from the field presented a compositional variation with a variety of asphaltene contents from 4 to 15.5%. Results of experimental flow assurance assessments revealed the black oil has high propensity for asphaltene precipitation due to addition of injected gas. The addition of N2, CO2 or CH4 significantly aggravates the asphaltene precipitation condition of these fluids. The comparison between the three gases showed that, when added in the same mole proportion, N2 was the strongest precipitant followed by CH4.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3