Estimation of Relative Permeability from Laboratory Displacement Experiments Application of the Analytic Solution with Capillary Corrections

Author:

Deng Lichi1,King Michael J.1

Affiliation:

1. Texas A&M University

Abstract

Abstract Waterflood, or other forms of immiscible displacement, have been the most widely used mechanism for secondary recovery and the determination of individual phase's relative permeability has been crucial for many reservoir engineering applications. Traditionally there are two ways of determining the relative permeability from laboratory experiments: the steady state experiment and the unsteady state experiment. The steady state experiment has the disadvantages of being time-consuming, obtaining few points on the relative permeability curves, as well as not being identical to the true reservoir displcacement process. On the other hand, the Johnson-Bossler-Naumann (JBN) method, based on Buckley-Leverett (B-L) immiscible displacement theory, is the standard procedure used to determine relative permeability from unsteady state experiments. However, the neglect of capillary pressure effect in the Buckley-Leverett theory has placed limitations on the method, such as requiring high flow rates. In order to remove the limitations of the displacement experiments and give more flexibility to the experiment configuration, an analytic model with capillary corrections is presented in the context of viscous dominated flow to study the impact caused by capillarity. The solution shows a fixed water-oil saturation bank at the outlet whose magnitude depends upon the wettability of the system. The analytic model is able to predict the saturation profile, considering capillarity, under various rock and fluid properties and experimental configurations. Therefore, the model could be used to calculate accurate relative permeability by matching experimental pressure drop and production reponses, correcting for capillarity. Also, through this method, a dimensionless parameter could be provided to quantify the effect caused by capillary end effect based on the length scale affected. It reflects the influence from a variety of aspects, not only from the experimental settings.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3