Derivation of Kinetic Rate Constant of Enzyme-Buffer Mud Cake Clean Up Systems - Laboratory Investigation and Verification in High Temperature Fractured Carbonate Reservoir

Author:

Mehtar M. A.1,Kasam Y..1,Al-Aleeli A..1,Ghosh B..2,Ghosh D..3,Chaudhuri B..4

Affiliation:

1. ADMA-OPCO, Abu Dhabi

2. The Petroleum Institute, Abu Dhabi

3. Epygen Labs. Dubai

4. Department of Pharmaceutical Sciences and Institute of Material Sciences, University of Connecticut, USA

Abstract

Abstract Horizontal wells enable drainage from a longer wellbore which helps to allow lower drawdown rate compared to vertical wells, minimizing gas or water coning. However productivity can be seriously affected unless mud cake damage is efficiently removed from all producing intervals along the horizontal wellbore. In recent years eco-friendly and non-corrosive bioenzymes (α/β-amylase) have shown great potential in cleaning wellbores uniformly and achieving higher well productivity. However in a low pressure fractured reservoir, there is always a possibility of localized reaction and loss of the clean-up fluid, unless the reactivity of the fluid is engineered based on the given well parameters. In this study α-amylase enzyme is modified to withstand higher thermal shock by structurally reinforcing the β-Helix layer to strengthen the catalytic centre by preferential protein hydration technique. Buffering was done to maintain different system pH and kinetic rate constant is derived through reducing sugar release measurement by DNS method using starch-xanthan gum-CaCO3 based drill-in-fluid as substrate. Though the overall reaction is extremely complex, a good correlation could be drawn between system pH and the rate of breaking mud cake into simple sugar. The kinetic rate constant index is used in final formulation of enzymatic clean up fluid for application in high temperature (110 °C) long horizontal wells drilled in carbonate formation, which allowed different soaking time due to operational constraints. The results show that there is excellent correlation between laboratory prediction and clean up efficiency in terms of well productivity.The study showed that each individual well demands a specific formula for clean-up fluid and higher than prognosed production could be achieved through custom formulation, based on well condition and operational requirement.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3