The Same Drift Monodiameter Completion System in Solving Drilling and Well Infrastructure Challenges

Author:

Godfrey Matthew1,Baker Roy1

Affiliation:

1. Enventure Global Technology

Abstract

Abstract The public domain contains many work efforts that document the advantages of expandable drilling and completions systems within the industry (Filippov 1999, Lohoefer 2000). The ability to place a solid steel liner or patch into a well and transform it by cold working to a larger diameter provides an opportunity to drill deeper while maintaining sufficient wellbore diameter. The use of expandable technology has led to the development of a formable and retractable-segmented cone. The cone supports an expandable system capable of passing through the drift of a base casing that can then result in an expansion providing the equivalent drift diameter. The technology allows the placement of additional liner points in a well that can extend liner lengths as well as isolate sections of open hole that were previously impossible to isolate due to wellbore geometry restriction. There are no limitations on the number of open hole patches installed in a given well which are helpful when wells experience multiple drilling hazards. Each patch can pass through a previously installed patch. The idea of monodiameter expandable liners began in the early 2000s (Dupal 2002, Dean 2003). This paper presents the technical challenges, solutions, and testing of a novel monodiameter system that expands 11-3/4 in. 47 lb/ft pipe which can result in a post-expansion drift diameter of 12-1/4 in. Finite element analysis helped transform the concept from the theoretical system to field execution. The work efforts show the successful testing of the monobore system at surface, and the resulting field trials demonstrate the ability of the technology to fulfil the installation objectives. In addition, the success of the methodology has led to the development of additional monobore system sizes.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3