Predicting the Performance of the Acid-Stimulation Treatments in Carbonate Reservoirs With Nondestructive Tracer Tests

Author:

Zakaria A.S.. S.1,Nasr-El-Din H.A.. A.1,Ziauddin M..2

Affiliation:

1. Texas A&M University

2. Schlumberger

Abstract

Summary Carbonate formations are very complex in their pore structure and exhibit a wide variety of pore classes, such as interparticle porosity, moldic porosity, vuggy porosity, and microporosity. Geologists have defined carbonate pore classes on the basis of sedimentology, thin sections, and porosity/permeability relationships, but the question remains concerning how these pore classes govern the acid flow through porous media. Core samples from six different carbonates, mainly limestone, were selected for the study. The samples were first investigated with thin-section analysis, high-pressure mercury-injection tests, and nuclear-magnetic-resonance measurements for pore-structure characterization, and X-ray diffraction for mineralogy examination. Next, tracer experiments were conducted, and the tracer-concentration profiles were analyzed to quantify the carbonate pore-scale heterogeneity. The heterogeneity is expressed with a parameter f—the available fraction of pore structure contributing to the flow. The data were used to study the flow of acid through carbonate rocks and correlate the pore classes to the acid response. More than 30 acid-coreflood experiments were conducted at 150°F and a hydrochloric acid concentration of 15 wt% on 1.5 × 6-in. core samples at different injection rates on each carbonate rock type. The objective of these sets of experiments is to determine the acid pore volume to breakthrough for each carbonate pore class. The findings of this study help us to connect the results from different characterization methods to the acid flow through the porous media of carbonate rocks. It was also found that the response of the acid depends on the carbonate pore classes. Application to the design of matrix acid treatments in carbonate rocks is discussed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3