Methods for Increased Accuracy in Numerical Reservoir Simulators

Author:

Todd M.R.1,O'Dell P.M.1,Hirasaki G.J.1

Affiliation:

1. Shell Development Co.

Abstract

Abstract This paper proposed the use of two-point upstream weighting of fluid mobility as an alternative to the generally employed single-point approximation Use of the two-point formula results in the reduction of both numerical dispersion of flood fronts and the sensitivity of predicted areal displacement performance to grid orientation. Stability analysis performance to grid orientation. Stability analysis provides the time-step limitation for control of provides the time-step limitation for control of solution oscillations. This together with limitations for control of overshoot and truncation error provides a practical basis for the automatic selection of time steps. Introduction As an indication of the growing concern for controlling the total cost of large-scale reservoir simulations, the emphasis of a number of recent publications has been directed toward increasing publications has been directed toward increasing computing efficiency. In this paper, two methods to increase the computing efficiency of reservoir simulators are described. The use of two-point upstream weighting of fluid mobility is described and compared with the commonly used single-point upstream approximation. The two-point approximation generally requires fewer grid blocks to obtain a given accuracy than does the single-point approximation. In addition, the calculated performance of areal models is less sensitive to grid performance of areal models is less sensitive to grid orientation when using the two-point approximation. Computing efficiency is also increased with the use of an automatic time-step selector. Time-step limitations are described in this paper for controlling stability, overshoot (negative saturations), and truncation error. In general, these limitations change each time step as conditions change. If any of the limitations is exceeded, the results of the simulation may be meaningless. An automatic time-step selector detects and avoids running difficulties by using the proper time-step size. Using these methods, simulation proper time-step size. Using these methods, simulation results are obtained with less expenditure of engineering and computer time. TWO-POINT APPROXIMATIONS FOR FLUID MOBILITY The majority of general-purpose reservoir simulators reportedly in use today are based on the solution of finite-difference analogs to the conservation equations describing multiphase flow in porous media. Thus, the continuous domain of a reservoir is divided into a number of discrete blocks, and solutions for pressure and saturations are obtained at the grid block centers (or grid points). Central-difference approximations are normally used for the spatial derivatives in the discrete formulation of the conservation equations. As described below, this scheme necessitates the evaluation of flow coefficients (kk,/muB) at the planes separating adjacent grid blocks. As fluid and planes separating adjacent grid blocks. As fluid and reservoir properties are only defined at grid points, some method must be devised for approximating interblock flow coefficients based on values at the grid points. Of the terms that make up the flow coefficients, only the saturation-dependent relative permeability changes rapidly enough from grid block to grid block to cause significant difficulty. Although several weighting schemes have been employed in the past for evaluating the relative permeability at a block face, only single-point upstream weighting appears to be in general use. Unfortunately, use of this weighting scheme is well known to cause excessive numerical dispersion of flood fronts. In addition, areal displacement performance is found to be quite sensitive to the grid orientation for grid meshes of practical extent for large-scale reservoir simulations. This has been demonstrated qualitatively by Garrett and will be described both qualitatively and quantitatively later in this paper. As an alternative to single-point weighting of relative permeability, a two-point weighting of relative permeability, a two-point scheme is now described which results in both reduced numerical dispersion of flood fronts and decreased sensitivity of predicted areal performance to grid orientation. SPEJ P. 515

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3