Advanced Research and Development in Unconventional Use of Tracer Technology for EOR and IOR: What lies beyond?

Author:

Chatterjee Monalisa1,Toh Sean1,Alshmakhy Ahmed2,Bigno Yann2,Hewitt Paul1

Affiliation:

1. Tracerco

2. ADNOC

Abstract

Abstract Over the last few decades, tracers have provided crucial insights on fluid flow behavior assessing reservoir connectivity. For years, they had been viewed as mostly passive molecules that go with the flow of the injected fluid and uncover pathways between injectors and producers. The proposed paper sheds light on some interesting newer frontiers of tracer applications with unconventional uses to gain further flow insight from an oil and gas reservoir. Although primarily developed for interwell applications, newer and more sophisticated genres of tracers have found their way to assist with well fluid flow behavior. Inflow tracer applications, used for phase flow diagnostics, have been around for a few decades now. However, with several parameters like physical space restrictions, temperature, solid support selection, multi-phase flow, initial surge and target concentrations at play, it was soon realised that an extended lifetime was needed to provide techno-economic benefits during reservoir monitoring. Microencapsulation of tracer molecules is one of the newer developed techniques that has shown significant extension to tracer life in controlled release tracer applications as well as improved dispersibility within fracking fluid. Newer synthesis mechanisms like microencapsulation have been developed to linearize inflow tracer release profiles that has led to a substantial increase in tracer lifetime. As the research and development progressed, newer tracers such as frac bead tracers were developed allowing long term fluid flowback monitoring in fracture stimulated wells. In parallel, it is still an active field of investigation as to how tracers can be integrated with common downhole completion and topside equipment of a well to accurately detect early water breakthrough. The paper discusses the advances in these target areas where chemistry is constantly being upgraded to suit end user needs. Novel applications and ‘out-of-the-box’ uses have been developed in the last couple of years where inflow tracers have found a modified use within the gas lift system in a well and integrated with the top-side flow arm of the well, eradicating the need for individual sampling of wells and detection of water breakthrough at an early onset, thus aiding timely decision making and improved recovery from the well. Real time analysis of tracers have attracted attention for quite some time now. The paper also discusses the latest development in this area and the challenges associated with real field applications. While advancements in versatility of the tracer molecules have been published prior in literature, to the best of the authors’ knowledge, no work has been published to date that discusses the latest advances in unconventional uses of the tracer molecules aiding EOR and IOR processes.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3