Interpreting Relative Permeability and Wettability From Unsteady-State Displacement Measurements

Author:

Batycky J.P.1,McCaffery F.G.1,Hodgins P.K.1,Fisher D.B.1

Affiliation:

1. Petroleum Recovery Inst.

Abstract

Abstract A procedure has been developed and tested for evaluating the capillary pressure and wetting properties of rock/fluid systems from unsteady-state displacement data such as that used for calculating two-phase relative permeability characteristics. Currently, the common practice is to conduct most coreflooding experiments so that the capillary pressure gradient in the direction of flow is small compared with the imposed pressure gradient. The proposed method, on the other hand, is based on performing low rate displacements during which capillary forces and, hence, end effects can influence the saturation distribution and pressure response of the core sample. Besides providing a means for monitoring capillary forces and wettability during the dynamic displacement test, the proposed method has the advantage of permitting the displacement tests to be conducted at rates more typical of those in the reservoir. Thus, it is possible to avoid potential problems such as fines migration and emulsion formation, and the method permits a realistic representation of transient interfacial effects that can be important with reservoir fluid systems and chemical flooding agents. Specifically, the method involves performing low rate displacements between the irreducible-water and residual-oil endpoint saturations. Except for the added provision of stopping, restarting, and sometimes reversing the flow after the endpoints have been reached, these are routine unsteady-state displacements in which the standard pressure drop is measured external to the core between the inlet and outlet fluid streams. The dynamically measured capillary pressure properties—besides indicating strong, weak, intermediate, or mixed wettability—then can be used to derive relative permeabilities from the displacement data. Examples of the technique for determining wettability are given for pure-fluids/Berea-sandstone andreservoir-fluids/preserved-reservoir-rock systems. Introduction It long has been recognized that capillary forces can influence the results of relative permeability and oil recovery measurements on core samples.1–5 A scaling criterion for linear displacement tests has been proposed to remove the dependence of oil recovery on displacement rate and system length.5 The objective is to avoid appreciable influence of capillary forces on the flooding behavior that causes a spreading of the displacement front and the well-known end effect or buildup of the wetting phase at the ends of the core. The suggested scaling causes the capillary pressure gradient in the direction of flow to be small compared with the imposed pressure gradient and is expressed asEquation 1 where L is system length (in centimeters), µ is displacing phase viscosity (in centipoise or millipascal-seconds), and q/A is flow rate per unit cross-sectional area (in centimeters per minute). Bentsen6 refined the criterion for neglecting capillary forces to include consideration of the mobility ratio. In related work, Peters and Flock7 recently proposed a dimensionless number and its critical value for predicting the onset of instabilities resulting from viscous fingering at unfavorable mobility ratios. In apparent contrast to the scaling coefficient suggested in Eq. 1, displacements were shown to decline at high flow rates for a given core system and wettability condition.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3