Energy Consumption Prediction and Optimization of Electrical Submersible Pump Well System Based on DA-RNN Algorithm

Author:

Lu Xin1,Han Guoqing1,Dong Peng1,Wang Luting2,Zhang Zhuangzhuang3,Liang Xingyuan1

Affiliation:

1. Institute of Petroleum Engineering, China University of Petroleum-Beijing, Beijing, China

2. Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

3. CNPC Changqing Oil Field Co, Xi'an, China

Abstract

Abstract Electrical submersible pump(ESP) well system is widely used in the oil industry due to its advantages of high displacement and lift capability. However, it is associated with significant energy consumption. In order to conserve electrical energy and enhance the efficiency of petroleum companies, a deep learning-based energy consumption calculation method is proposed and utilized to optimize the most energy-efficient operating regime. The energy consumption of the ESP well system is precisely determined through the application of the Pearson correlation coefficient analysis method, which is utilized to examine the relationship between production parameters and energy usage. This process aids in identifying the input parameters of the model. Following this, an energy consumption prediction model is developed using the dual-stage attention-based recurrent neural network(DA-RNN) algorithm. To evaluate the accuracy of the DA-RNN model, a comparison of its errors is carried out in comparison to three other deep learning algorithms: Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Transform. Lastly, an orthogonal experiment is executed using the chosen model to pinpoint the most energy-efficient operating regime. Analysis of 325 ESP wells in the Bohai PL oil field indicated that ten parameters, including choke diameter, casing pressure, pump inlet pressure, pump outlet pressure, motor temperature, frequency, oil production, gas production, water production, and GOR significantly impact the energy consumption of the ESP well system. Consequently, these parameters were selected as input variables for the deep learning model. Due to the attention mechanisms employed in the encoding and decoding stages, the DA-RNN algorithm achieved the best performance during model evaluation and was chosen for constructing the energy consumption prediction model. Furthermore, the DA-RNN algorithm demonstrates better model generalization capabilities compared to the other three algorithms. Based on the energy consumption prediction model, the operating regime of the ESP system was optimized to save up to 12% of the maximum energy. The energy consumption of the ESP well system is affected by numerous parameters, and it is difficult to comprehensively evaluate and predict quantitatively. Thus, this work proposes a data-driven model based on the DA-RNN algorithm, which has a dual-stage attention mechanism to rapidly and accurately predict the energy consumption of the ESP well system. Optimization of production parameters using this model can effectively reduce energy consumption.

Publisher

SPE

Reference12 articles.

1. Effective Electrical Submersible Pump Management Using Machine Learning;Pham;Open Journal of Civil Engineering,2021

2. Fault Diagnosis Method and Application of ESP Well Based on SPC Rules and Real-Time Data Fusion;Yang;Mathematical Problems in Engineering,2022

3. Detailed Energy Accounting of Electrical Submersible Pumping Systems;Grassian;Energies,2020

4. Accounting of geomechanical layer properties in multi-layer oil field development;Galkin;Journal of Mining Institute,2020

5. Improving the Efficiency of Oil and Gas Wells Complicated by the Formation of Asphalt–Resin–Paraffin Deposits;Nurgalieva;Energies,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3