STEP Change in Preventing Stuck Pipe and Tight Hole Events Using Machine Learning

Author:

Bahlany Salah1,Maharbi Mohammed1,Zakwani Saud1,Busaidi Faisal1,Benvenuti Ferrante2

Affiliation:

1. Petroleum Development Oman

2. Boston Consulting Group

Abstract

Abstract Wellbore stability problems, such as stuck pipe and tight spots, are one of the most critical risks that impact drilling operations. Over several years, Oil and Gas Operator in Middle East has been facing problems associated with stuck pipe and tight spot events, which have a major impact on drilling efficiency, well cost, and the carbon footprint of drilling operations. On average, the operator loses 200 days a year (Non-Productive Time) on stuck pipe and associated fishing operations. Wellbore stability problems are hard to predict due to the varying conditions of drilling operations: different lithology, drilling parameters, pressures, equipment, shifting crews, and multiple well designs. All these factors make the occurrence of a stuck pipe quite hard to mitigate only through human intervention. For this reason, The operator decided to develop an artificial intelligence tool that leverages the whole breadth and depth of operator data (reports, sensor data, well engineering data, lithology data, etc.) in order to predict and prevent wellbore stability problems. The tool informs well engineers and rig crews about possible risks both during the well planning and well execution phase, suggesting possible mitigation actions to avoid getting stuck. Since the alarms are given ahead of the bit, several hours before the possible occurrence of the event, the well engineers and rig crews have ample time to react to the alarms and prevent its occurrence. So far, the tool has been deployed in a pilot phase on 38 wells giving 44 true alarms with a recall of 94%. Since mid-2021 operator has been rolling out the tool scaling to the whole drilling operations (over 40 rigs).

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3