Static and Dynamic Assessment of DFN Permeability Upscaling

Author:

Ahmed Elfeel M..1,Geiger S..1

Affiliation:

1. Heriot-Watt University

Abstract

Abstract Nearly half of the remaining petroleum reserves are contained in naturally fractured reservoirs (NFR). An accurate estimate of the effective fracture permeability tensor is a key to the successful prediction of oil recovery from NFR. Standard workflows nowadays employ discrete fracture network (DFN) modeling and analytical or flow-based methods to upscale fracture permeabilities. However, DFN modeling imposes some important challenges, which can cause great uncertainty in the effective permeability tensor and subsequent recovery prediction: Analytical upscaling methods, which are commonly used due to computational efficiency, are inaccurate for poorly connected fracture networks. Flow-based upscaling methods depend on boundary conditions and are computationally expensive. Defining the optimum grid size for either method is also very difficult. In addition, DFN upscaling is often driven by practical issues such as time constrains and computational limitations, leaving little room to investigate the effects of upscaling methods and grid size. In this paper we utilize features in leading DFN simulators employed in standard industry workflows for computing effective permeability tensors with flow-based and analytical methods. We use two realistic dataset from fractured formations of onshore reservoirs in our assessment. Not surprisingly, there is up to three orders of magnitude variation in the effective permeability based on the chosen upscaling method and perceived optimum grid cell size. This has tremendous impact on predicted recovery rates and ultimate recovery; ultimately uncertainty in upscaling can mask uncertainty in the geological model. We hence introduce a new simulation technique, Discrete Fracture and Matrix (DFM) modeling, which accounts accurately for flow in the fractures and rock matrix as an efficient alternative for computing effective permeability tensors as it allows us to assess the accuracy of classical DFN upscaling approaches, which all help reducing uncertainty in recovery prediction.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3