Viscoplastic Deformation During CO2 Storage in Danish Chalk Reservoirs: Role of Petrophysical Heterogeneity and Mechanical Alteration

Author:

Amour Frédéric1,Hosseinzadehsadati Seyedbehzad1,Nick Hamidreza M.1

Affiliation:

1. DTU Offshore

Abstract

Abstract Denmark aims at a 70% reduction in greenhouse gas emissions by 2030 compared to levels measured in 1990, with a long-term target of becoming carbon-neutral by 2050. As part of this national effort, the Bifrost project, aims at repurposing two depleted gas fields in the Danish North Sea for CO2 storage, namely the Harald West sandstone field as the primary target and the neighboring Harald East chalk field as a potential upside. The Harald East chalk is the focus of this study. The storage potential and infrastructures available within the multiple chalk fields located in the Danish North Sea represent valuable assets to fulfill the national objectives enabling a time- and cost-efficient implementation of carbon storage activities. One of the main challenges for carbon storage in chalk is the contradictory experimental results reported in literature that indicate both a strengthening and a softening effect of supercritical CO2 on the plastic and elastic properties of chalk. Such uncertainty hampers accurate prediction of the deformation response of storage sites. In this context, the study aims at assessing the impacts of two levels of uncertainty; the type of mechanical alteration induced by supercritical CO2 and the petrophysical heterogeneity on the long-term deformation behaviour of chalk reservoirs. An in-house hydro-mechanical-chemical model calibrated against experimental data on chalk is applied in a reservoir model of the Harald East field. A 16 year-long injection period is simulated assuming two scenarios. In scenario 1, supercritical CO2 has no impact on the mechanical properties of the rock, whereas in scenario 2, a 30% and 25% lowering of the pore collapse stress and elastic modulus of chalk is assumed. A systematic comparison of the flow and mechanical behaviour of low and high porosity cells located in the vicinity of an injection well indicates that the impact of CO2 on the mechanical properties of chalk, the distance of the cells from the injector, the local stress redistribution taking place in the reservoir between mechanically soft and strong cells, and the presence of natural gas in pore space before CO2 injection are key factors controlling the amount and distribution of plastic deformation occurring in the storage site. The outcome of this work enables quantifying the main risks associated with rock compaction close to and further away from injectors during and after carbon storage in chalk fields.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3