Viscoelastic Behavior and Proppant Transport Properties of a New High-Temperature Viscoelastic Surfactant-Based Fracturing Fluid

Author:

Gomaa A.M.. M.1,Gupta D.V.S.. V.S.1,Carman P..1

Affiliation:

1. Baker Hughes

Abstract

Abstract Viscoelastic surfactant (VES) fracture fluids were developed as a nondamaging alternative to conventional polymer-based fluids. However, the viscosity performance of typical VES fluids is dramatically reduced at high temperature. Therefore, these fluids are typically limited to treat relatively low-temperature formations unless foamed with nitrogen or carbon dioxide. Recent laboratory work has shown that viscosity alone may not accurately assess proppant transport. Thus, combination of rotational and oscillatory measurements to determine the fluid viscous and elastic properties can better predict whether the fluid can be applied successfully in the field. The present study was conducted to introduce a new Gemini VES system that can gel and maintain useful viscosity up to 275°F, which can provide additional downhole benefits. Dynamic and static proppant settling tests were conducted using a high-pressure/high-temperature visualization cell to confirm the effect of elastic properties of this fluid on proppant settling. Finally, proppant settling tests were conducted with three proppant types of the same size, but different density and shape at a range of concentrations. Experimental results show that the surfactant gel behaved as an elastic material (elastic regime), where the elastic modulus (G') was dominant over the viscous modulus (G”) during the tested range of frequency. This behavior gives perfect proppant transport properties. At temperature less than 225°F, Values of G′ were independent of the frequency and/or shear rate values, while G” increased with increasing frequency and/or shear rate. At higher temperature, both G′ and G” increased with increasing frequency and/or shear rate. This gives a good proppant-carrying capacity during dynamic conditions (mixing and injection) with a small pressure drop. The addition of an internal liquid breaker increases the viscous regime with time and temperature. When elastic regime dominates, 100% proppant suspension was confirmed for at least two hours at static and dynamic conditions and temperatures in the range of 75 to 250°F.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3