Deep-Learning-Based Surrogate Model to Predict CO2 Saturation Front in Highly Heterogeneous Naturally Fractured Reservoirs: A Discrete Fracture Network Approach

Author:

Tariq Zeeshan1,Xu Zhen1,Gudala Manojkumar1,Yan Bicheng1,Sun Shuyu1

Affiliation:

1. King Abdullah University of Science and Technology

Abstract

Abstract Naturally fractured reservoirs (NFRs), such as fractured carbonate reservoirs, are ubiquitous across the worldwide and are potentially very good source to store carbondioxide (CO2) for a longer period of time. The simulation models are great tool to assess the potential and understanding the physics behind CO2-brine interaction in subsurface reservoirs. Simulating the behavior of fluid flow in NFR reservoirs during CO2 are computationally expensive because of the multiple reasons such as highly-fractured and heterogeneous nature of the rock, fast propagation of CO2 plume in the fracture network, and high capillary contrast between matrix and fractures. This paper presents a data-driven deep learning surrogate modeling approach that can accurately and efficiently capture the temporal-spatial dynamics of CO2 saturation plumes during injection and post-injection monitoring periods of Geological Carbon Sequestration (GCS) operations in NFRs. We have built a physics-based numerical simulation model to simulate the process of CO2 injection in a naturally fractured deep saline aquifers. A standalone package was developed to couple the discrete fracture network in a fully compositional numerical simulation model. Then reservoir model was sampled using the Latin-Hypercube approach to account for a wide range of petrophysical, geological, reservoir, and operational parameters. The simulation model parameters were obtained from extensive geological surveys published in literature. These samples generated a massive physics-informed database (about 900 simulations) that provides sufficient training dataset for the Deep Learning surrogate models. Average Absolute Percentage Error (AAPE) and coefficient of determination (R2) were used as error metrics to evaluate the performance of the surrogate models. The developed workflow showed superior performance by giving AAPE less than 5% and R2 more than 0.95 between ground truth and predictions of the state variables. The proposed Deep Learning framework provides an innovative approach to track CO2 plume in a fractured carbonate reservoir and can be used as a quick assessment tool to evaluate the long term feasibility of CO2 movement in fractured carbonate medium.

Publisher

SPE

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3