Prediction of Shale-Gas Production at Duvernay Formation Using Deep-Learning Algorithm

Author:

Lee Kyungbook1,Lim Jungtek2,Yoon Daeung3,Jung Hyungsik4

Affiliation:

1. Korea Institute of Geoscience and Mineral Resources

2. SmartMind

3. Hanyang University and Chonnam National University

4. Seoul National University

Abstract

Summary Decline–curve analysis (DCA) is an easy and fast empirical regression method for predicting future well production. However, applying DCA to shale–gas wells is limited by long transient flow, a unique completion design, and high–density drilling. Recently, a long short-term-memory (LSTM) algorithm has been widely applied to the prediction of time–series data. Because shale–gas–production data are time–series data, the LSTM algorithm can be applied to predict future shale–gas production. After information for 332 shale–gas wells in Alberta, Canada, is obtained from a commercial database, the data are preprocessed in seven steps, including cutoffs for well list, data cleaning, feature extraction, train and test sets split, normalization, and sorting for input into the LSTM model. The LSTM model is trained in 405 seconds by two features of production data and a shut–in (SI) period from 300 wells. The two–feature case shows a better prediction accuracy than both the one–feature case (i.e., production data only) and the hyperbolic DCA, where the three methods are tested on unseen data from 15 wells. The two–feature case can predict future production rates according to the SI period and provide a stable result for available time–series data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3