Production Data Analysis of Shale Oil Reservoir Using the Dynamic Drainage Pore Volume Concept: Lessons-Learned from Well-To-Well Fracture Driven Interaction in Lucaogou Shale Formation

Author:

Pan Yuewei1,Qin Jianhua2,Zhang Jing2,Shang Jianlin2,Ma Wei3

Affiliation:

1. 1. PetroChina Exploration & Production Company, Beijing, China; 2. Research Institute of Petroleum Exploration & Development, Beijing, China

2. Xinjiang OilField Company, Karamay, Xinjiang, China

3. Texas A&M University, College Station, Texas, USA

Abstract

Abstract Many pilot researches consider production gains or losses in parent/child wells in short-term thereby determining the optimal completion parameters (eg. well spacing, stage spacing). Long-term recovery varies from negative-to-positive during the post-frac-hit evaluation based on the magnitude of the pressure sink and the distance of parent/child wells. However, quantitatively analyzing frac-hits impact remains unsolved. This paper presents a novel workflow combining RTA diagnostic plots and the prediction of dynamic drainage pore volume (DDPV) to analyze the frequent well/well fracture-driven interaction (FDI) (commonly referred to as frac-hits) in the Lucaogou shale formation, Junggar Basin. According to the published knowledge, different strategies have been employed in Lucaogou formation to minimize the negative effect and to avoid the parent/child wells (e.g cube-development). Thus, optimizing stage, cluster and well spacing in well-pad zipper-frac development is in necessity. This paper first reviews the frac-hit mechanisms in both parent/child wells and well-pad zipper-frac development. We then characterize, quantify and rank the historical frac-hit events in Lucaogou formation based on the documented data. With the prediction of DDPV using numerical integration/differentiation assisted by diagnostic plots and specialized plots in RTA (eg. flowing material balance plot, square-root-of-time diagnostic plot), the pressure sink front can be acquired. The accuracy of DDPV forecast is validated using a synthetic case study. We further apply it to three field case studies to demonstrate the versatility and applicability of the proposed workflow. The successful applications suggest that the proposed workflow is an alternative to making field-development decisions, minimizing the negative impacts of frac-hits and thus freeing the cashflows. The outcomes are mainly but not limited to: 1) the common early departures from linear flow regime are in good alignment with the DDPV forecasts in both parent/child and well-pad development scenarios; 2) A competition of the per-well DDPV might be triggered during frac-hits in parent/child well and 3) long-term recovery in well-pad development with a tighter well-spacing might be boosted with a smaller per-well DDPV and DOI.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3