Implementing Artificial Neural Networks and Support Vector Machines in Stuck Pipe Prediction

Author:

Al-Baiyat Islam1,Heinze Lloyd1

Affiliation:

1. Texas Tech University

Abstract

Abstract Stuck pipe has been recognized as one of the most challenging and costly problems in the oil and gas industry. However, this problem can be treated proactively by predicting it before it occurs. The purpose of this study is to implement the two most powerful machine learning methods, Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), to predict stuck pipe occurrences. Two developed models for ANNs and SVMs with different scenarios were implemented for prediction purposes. The models were designed and constructed by the MATLAB language. The MATLAB built-in functions of ANNs and SVMs, and the MATLAB interface from the library of support vector machines were applied to compare the results. Furthermore, one database that included mud properties, directional characteristics, and drilling parameters has been assembled for training and testing processes. The study involved classifying stuck pipe incidents into two groups - stuck and non-stuck - and also into three subgroups: differentially stuck, mechanically stuck, and non-stuck. This research has also gone through an optimization process which is vital in machine learning techniques to construct the most practical models. This study demonstrated that both ANNs and SVMs are able to predict stuck pipe occurrences with reasonable accuracy, over 85%. The competitive SVM technique is able to generate generally reliable stuck pipe prediction. Besides, it can be found that SVMs are more convenient than ANNs since they need fewer parameters to be optimized. The constructed models generally apply very well in the areas for which they are built, but may not work for other areas. However, they are important especially when it comes to probability measures. Thus, they can be utilized with real-time data and would represent the results on a log viewer.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3