A Review of Organic Acids Roles in Acidizing Operations for Carbonate and Sandstone Formations

Author:

Alhamad Luai1,Alrashed Ahmed1,Al Munif Eiman1,Miskimins Jennifer1

Affiliation:

1. Colorado School of Mines

Abstract

Abstract Hydrochloric acid (HCl) is the acid of choice for acidizing operations in most carbonate formations and is the base acid commonly paired with others such as hydrofluoric (HF) in most sandstone applications. However, high dissolving power, high corrosion rate, lack of penetration, and sludging tendency coupled with high temperature can make HCl a poor choice. Alternatively, weaker and less corrosive chemicals such as organic acids can be used instead of HCl to avoid these issues. The objective of this paper is to provide an intensive review on recent advancements, technology, and problems associated with organic acids. The paper focuses on formic, acetic, citric, and lactic acids. This review includes various laboratory evaluation tests and field cases which outline the usage of organic acids for formation damage removal and dissolution. Rotating disk apparatus results were reviewed to determine the kinetics for acid dissolution of different minerals. Additional results were collected from solubility, corrosion, core-flooding, Inductively Coupled Plasma (ICP), X-Ray Diffraction (XRD), and Scanning Electron Microscope Diffraction (SEM) tests. Due to their retardation performance, organic acids have been used along with mineral acids or as a stand-alone solution for high-temperature applications. However, the main drawback of these acids is the solubility of reaction product salts. In terms of conducting dominant wormhole tests and low corrosion rating, organic acids with low concentrations show good results. Organic acids have also been utilized in other applications. For instance, formic acid is used as an intensifier to reduce the corrosion rate due to HCl in high-temperature operations. Acetic and lactic acids can be used to dissolve drilling mud filter cakes. Citric acid is commonly used as an iron sequestering agent. This paper shows organic acid advances, limitations, and applications in oil and gas operations, specifically, in acidizing jobs. The paper differentiates and closes the gap between various organic acid applications along with providing researchers an intensive guide for present and future research.

Publisher

SPE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3