Effect of Capillary Number and Its Constituents on Two-Phase Relative Permeability Curves

Author:

Fulcher R.A.1,Ertekin Turgay2,Stahl C.D.2

Affiliation:

1. Arco Oil and Gas Co.

2. Pennsylvania State U.

Abstract

Summary One primary goal of any enhanced recovery project is to maximize the ability of the fluids to flow through a porous medium (i.e., the reservoir). This paper discusses the effect of capillary number, a dimensionless group describing the ratio of viscous to capillary forces, on two-phase (oil-water) relative permeability curves. Specifically, a series of steady-state relative permeability measurements were carried out to determine whether the capillary number causes changes in the two-phase permeabilities or whether one of its constituents, such as flow velocity, fluid viscosity, or interfacial tension (IFT), is the controlling variable. For the core tests, run in fired Berea sandstone, a Soltrol 170™ oil/calcium chloride (CaCl2) brine/isopropyl alcohol (IPA)/glycerin system was used. Alcohol was the IFT reducer and glycerin was the wetting-phase viscosifier. The nonwetting-phase (oil) relative permeability showed little correlation with the capillary number. As IFT decreased below 5.50 dyne/cm [5.50 N/m], the oil permeability increased dramatically. Conversely, as the water viscosity increased, the oil demonstrated less ability to flow. For the wetting-phase (water) relative permeability, the opposite capillary number effect was shown. For both the tension decrease and the viscosity increase (i.e., a capillary number increase) the water permeability increased. However, the water increase was not as great as the increase in the oil curves with an IFT decrease. No velocity effects were noted within the range studied. Other properties relating to relative permeabilities were also investigated. Both the residual oil saturation (ROS) and the imbibition-drainage hysteresis were found to decrease with an increase in the capillary number. The irreducible water saturation was a function of IFT tension only. A relative permeability model was developed from the experimental data, based on fluid saturations, IFT, fluid viscosities, and the residual saturations, by using regression analysis. Both phases were modeled for both the imbibition and the drainage processes. These models demonstrated similar or better fits with experimental data of other water- and oil-wet systems, when compared with existing relative permeability models. The applicability of these regression models was tested with the aid of a two-phase reservoir simulator. Introduction As world oil reserves dwindle, the need to develop EOR techniques to maximize recovery is of great importance. Methods such as chemical flooding, miscible flooding, and thermal recovery involve altering the mobility and/or the IFT between the displacing the displaced fluids. Recovery efficiency was found to be dependent on the capillary number, defined asEquation 1 The viscous forces were defined as the fluid viscosity, flow velocity, and the flow path length. Capillary forces vary with the fluid IFT and the pore geometry of the medium.1 Taber defined the capillary number in terms of the pressure drop between two points, the flow length, and the IFT.2Equation 2 He concluded that as this ratio increased to a value of 5 psi/ft/dyne/cm [0.2 kPa/m/N/m] the ROS was reduced significantly. By decreasing the IFT by using surface-active agents, or by decreasing the path length by altering the field geometry, the capillary number could be increased. Others have shown similar results. Melrose and Brandner,3 for example, indicated that as the capillary number rose to a value of 10–4, the microscopic displacement efficiency, which accounts for the residual saturations to both oil and water, increased. The effects of the capillary number on the recovery of residual oil are given by Chatzis and Morrow4 and by other authors5 (Fig. 1). Few studies, however, have shown the effect of the capillary number on the two-phase flow between the residuals. The variables within this group have been researched, but their combined effect on relative permeabilities has been largely ignored. Several authors have noted that the viscosity ratio of oil and water alters the oil relative permeability but has little effect on that of water.6–8 Few or no changes by fluid flow velocity were observed, provided that no boundary effects were present during the core tests.9–11

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3