Affiliation:
1. Texas A&M University
2. Texas A&M University at Qatar
Abstract
AbstractDew point pressure is a critical measurement for any wet gas reservoir. Condensate blockage is likely when the reservoir pressure decreases below the dew point pressure and this can result in a reduction of gas productivity. Errors in measuring dew point pressure can lead to errors in the estimation of the onset of condensate blockage and thus be detrimental to the management of wet gas fields. This work presents experimental verification of a new method of determining dew point pressures for wet gas fluids. Results obtained from this method are compared to calculated values based on Peng Robinson equation of state.Dew point pressure determination is important when devising solutions on how to prevent condensate blockage. One possible treatment fluid, carbon dioxide, has the ability to lower dew point pressures and thus delay the onset of condensate blockage. The novel method presented in this work was applied to determine the experimental dew point pressure of several wet gas mixtures as a function of carbon dioxide concentration. These experiments also show the potential of using carbon dioxide to lower dew point pressures in wet gas fields.Experimental results show close match between the experimental estimates of dew point pressure and the Peng Robinson calculations. Experimental results also support the general observation that carbon dioxide has the ability to lower the dew point pressure of wet gas fields.The results of this work are useful in Enhanced Oil/Gas Recovery processes that utilize carbon dioxide and for Huff and Puff which uses carbon dioxide to remove and prevent further build-up of condensate banks in wet gas reservoirs. This work investigates experimental conditions showing the change in dew point pressure as a function of carbon dioxide concentration. This dynamic relationship can be used to tune equation of state models which, in turn, allows more accurate reservoir modeling of hydrocarbon recovery process.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献