Effect of photosensitisers on growth and morphology of Phytophthora citrophthora coupled with leaf bioassays in pear seedlings

Author:

Zambounis Antonios,Sytar Oksana,Valasiadis Dimitris,Hilioti Zoe

Abstract

The phytopathogenic oomycetes of the genus Phytophthora cause devastating economic losses worldwide.<br />Naphthodianthrone compounds, present in plant extracts of buckwheat and Saint John’s wort act as photosensitiser<br />agents and exhibit antimicrobial activity against a number of pathogens. In this study, we investigated the potential<br />inhibitory effects of fagopyrin and hypericin on Phytophthora citrophthora (R.E. Sm. &amp; E.H. Sm.) Leonian 1906, the<br />main causal agent of rot diseases in deciduous trees. Fagopyrin had the highest inhibitory effect in the colony growth<br />at a concentration of 2% of a stock solution (3 mg/mL), inducing clubbed hyphae with round tips. Notably, hypericin<br />also inhibited the radial colony growth and increased the hyphal branching at the subapical region, while also promoting<br />the formation of enlarged cells with irregular shapes growing collectively as biofilm-like structures. In terms of the<br />mycelial dry weight, although both photosensitisers had considerable inhibitory effects, the fagopyrin treatment was<br />most effective. Leaf bioassays showed that under dark conditions the photosensitiser pre-treated zoospores formed a<br />dense, but aberrant, mycelial growth with penetration defects. In contrast, when the zoospore production was performed<br />under light conditions, the zoospores failed to cause necrotic lesions and penetration events implying that their<br />virulence was impaired. These findings shed light on the biological effects of fagopyrin and hypericin in the regulation<br />of the mycelial growth, morphology and pathogenicity of P. citrophthora.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3