Possibilities of including surface runoff barriers in the slope-length factor calculation in the GIS environment and its integration in the user-friendly LS-RUSLE tool

Author:

Brychta Jiří,Brychtová Martina

Abstract

The effect of the morphology is key aspect of erosion modelling. In Universal Soil Loss Equation (USLE) type methods, this effect is expressed by the topographic factor (LS). The LS calculation in GIS is performed by a unit contributing area (UCA) method and can mainly be influenced by the pixel resolution, by the flow direction algorithm and by the inclusion of a hydrologically closed unit (HCU) principle, the cutoff slope angle (CSA) principle and the ephemeral gullies extraction (EG) principle. This research presents a new LS-RUSLE tool created with the inclusion of these principles in the automatic user-friendly GIS tool. The HCU principle using a specific surface runoff interruption algorithm, based on pixels with NoData values at the interruption points (pixels), appears to be key. With this procedure, the occurrence of overestimation results by flow conversion was rapidly reduced. Additionally, the reduction of extreme L and LS values calculated in the GIS environment was reached by the application of the CSA and EG principles. The results of the LS-RUSLE model show the prospective use of this tool in practice.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3