Abstract
Interaction between microbially induced calcium carbonate precipitation (MICP) and compaction procedures to stabilise raw soil materials has been studied with the aim of producing earthen engineering structures. Initial tests to optimise MICP in aqueous medium and in selected soils were performed. MICP and compaction were finally applied to assess medium-size elements. The main result was that sandy soils should be compacted before irrigation treatment to close the existing voids and prevent bacterial sweeping, whereas clayey soils should be compacted after irrigation treatment to avoid the plugging effect. MICP improved small sand soil compressive strength by up to 32% over the value reached by compaction alone. However, MICP had no positive effect on coarse soils and soils with an optimum particle size distribution: MICP treatment was not able to fill large connected voids in the first case and it caused little void generation due to bacteria sporulation in the second.
Subject
Mechanics of Materials,General Materials Science,Building and Construction
Reference40 articles.
1. Easton, D.; Wright, C. (2007) The rammed earth house, Chelsea Green Publishing, Vermont (2007).
2. Minke, G. (2012) Building with earth. Design and technology of a sustainable architecture, Third Edit, Birkhäuser Berlin, Boston (2012).
3. Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries;Chang; Int J Polym Sci ,2015
4. A review of microbial precipitation for sustainable construction;Achal; Constr Build Mater 93,2015
5. Omoregie, A.I.; Khoshdelnezamiha, G.; Ong, D.E.L.; Nissom, P.M. (2017) Microbial-induced carbonate precipitation using a sustainable treatment technique. Int. J. Serv. Manag. Sustain. 2 [1], 17-31. Retrieved from http://www.ijsmssarawak.com/ijsms_vol_2/No2_MICP_Armstrong.pdf.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献