Applicability of nickel-based compounds as catalysts for thermal conversion of primary biomass pyrolysis products

Author:

Malko M. V.1,Vasilevich S. V.2,Podbolotov K. B.3,Degterov D. V.1,Asadchyi A. N.1

Affiliation:

1. Institute of Power Engineering of the National Academy of Sciences of Belarus

2. Belarusian State Aviation Academy

3. Physical-Technical Institute of the National Academy of Sciences of Belarus

Abstract

The paper discusses the results of an experimental study of the thermal decomposition of pyrolytic tar carried out in isothermal conditions at temperatures of 300, 350 and 400 °C. It was found that the kinetics of this process can be described using the Avrami–Erofeev equation with a variable parameter n. Analysis of the established data showed that the area of variation of this index included values from 0.415 to 1.238. The mean value of the n parameter calculated for all variants of the study was 0.694 (95 % CI from 0.605 to 0.783), and the median value was 0.639. As is known, the Avrami–Erofeev equation describes the kinetics of thermal decomposition of matter in the condensed state, determined by the nucleation process. This suggests that in the case of thermal decomposition of pyrolytic tar in the temperature range 300–400 °С this process is the limiting stage of the total process. The pyrolytic tarn decomposition rate was found to increase in the case of introduction of particles of nickel catalyst developed at the Physical and Technical Institute of the National Academy of Sciences of Belarus into the reaction zone. However, only with respect to one sample, it can be confidently stated that this is the result of the catalytic effect of applied nickel catalyst. Based on the established data, it was concluded that it is promising to use a nickel-containing catalyst in the processes of thermal decomposition of heavy hydrocarbons formed in the processes of thermochemical conversion of biomass.

Publisher

Publishing House Belorusskaya Nauka

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3