Assessment of the influence of the length and number of heat pipes on the efficiency of the removal of excess thermal energy from the processor

Author:

Piskun G. A.1,Alexeev V. F.1,Stepchenkov O. V.2,Popov A. N.2,Belikov A. N.1,Rybakov D. G.1

Affiliation:

1. Belarusian State University of Informatics and Radioelectronics

2. Open Joint-Stock Company “Scientific Research Institute of Electronic Computers”

Abstract

The results of a study of the influence of the length and number of heat pipes included in the radiator construction on the efficiency of removing excess thermal energy from modern processors are presented. Research was carried out for radiator constructions consisting of a heat sink, a heat pipe and a finned radiator installed on the processor and located in an open environment (air movement occurs without mixing, which is typical for free convection) or in a closed environment (air flows circulate in a closed loop, which is typical for natural convection in a limited space). Numerical modeling was carried out using the Flow Simulation module of the SolidWorks software package. It has been shown that the value of the temperature difference formed at the ends of heat pipes (hereinafter referred to as HP) significantly depends on the natural movement of air flows in an open or closed environment. It has been established that with an increase in the length of the HP from 100 mm to 500 mm, the temperature difference increases both in the case of air flow in an open environment and in a closed environment, in particular, the temperature difference increase at the ends of one HP with a diameter of 6 mm at power 50 W processor will be 29.54 °C (open environment) and 47.14 °C (closed environment); for three HPs – 9.13 °С (open environment) and 16.28 °С (closed environment); for five HPs – 5.24 °С (open environment) and 10.11 °С (closed environment). It has been established that an increase in the number of HPs with a diameter of 6 mm and a length of 500 mm from 1 pc. up to 5 pcs. leads to a decrease in temperature difference, in particular, with a processor power of 50 W, the temperature difference will be 36.17 °C (one HP in an open environment) and 55.59 °C (one HP in a closed environment); 11.04 °С (three HPs in an open environment) and 19.06 °С (three HPs in a closed environment); as well as 6.3 °С (five HPs in an open environment) and 11.56 °С (five HPs in a closed environment). The results obtained can be used to modernize the cooling systems of various technical devices based on processors, as well as to design new high-performance equipment taking into account the use of heat pipes.

Publisher

Publishing House Belorusskaya Nauka

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3