Synthesis of nano-dimensional cobalt-zinc ferrites by the low-temperature spray-drying with subsequent thermolysis

Author:

Petrova E. G.1,Shavshukova Ya. A.1,Kotsikau D. A.1,Laznev K. V.2,Pankov V V.1

Affiliation:

1. Belarusian State University, Minsk

2. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk

Abstract

Co0,65Zn0,35Fe2O4nanoparticles were produced by spray-drying in air in presence of NaCl from the solution of nitrates, as well as from the suspension of coprecipitated particles. The precursors obtained were annealed at 300–900 °C in the matrix of the inert component in order to increase the crystallinity degree without substantial increase of the nanoparticle size. Microstructure, morphology and magnetic properties of nanoparticles were studied by XRD, FT-IR spectroscopy, TEM / SEM and magnetometry. For the ferrites obtained from nitrate solutions partial oxidation of Co2+ions to Co3+occurs, which leads to the formation of two spinel phases, ferrite and cobaltite. With the increase of annealing temperature the content of cobaltite decreases and content of ferrite increases. No cobaltite formation was observed for annealing the spray-dried suspension. An increase in the temperature of the heat treatment leads to partial recrystallization of the particles and the ordering of the ferrite crystal structure, which causes an increase in the specific magnetization of the materials: from 32.8 emu/g (before annealing) to 91.3 emu/g (annealing at 900 ° C). The average diameter of nanoparticles after heat treatment does not exceed 100 nm.

Publisher

Publishing House Belorusskaya Nauka

Subject

Inorganic Chemistry,Organic Chemistry,Chemistry (miscellaneous),Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3