Solvability of the control problem of the asynchronous spectrum of linear almost periodic systems with a lower triangular representation of the averaging of coefficient matrix

Author:

Demenchuk A. K.1

Affiliation:

1. Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract

A linear control system with an almost periodic matrix of coefficients and control in the form of the feedback linear in phase variables is considered. It is assumed that the feedback coefficient is almost periodic and its frequency module, i. e. the smallest additive group of real numbers, including all the Fourier exponents of this coefficient, is contained in the frequency module of the coefficient matrix. The system under consideration is studied in the case of a triangular average value of the matrix of coefficients. For the described class of systems, the control problem of the asynchronous spectrum with a target set of frequencies is solved. This task is to construct such a control from an admissible set that the system closed by this control has almost periodic solutions, a set of the Fourier exponents of which contains a predetermined subset, and the intersection of the solution frequency modules and the coefficient matrix is trivial. The necessary and sufficient conditions for the solvability of this problem are obtained.

Publisher

Publishing House Belorusskaya Nauka

Reference9 articles.

1. Ivanov A. G. Optimal control of almost-periodic motions. Journal of Applied Mathematics and Mechanics, 1992, vol. 56, no. 5, pp. 737–746. https://doi.org/10.1016/0021-8928(92)90059-h

2. Ivanov A. G. Elements of the mathematical apparatus in the almost periodic optimization problems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta [Proceedings of the Institute of Mathematics and Informatics at Udmurt State University], 2002, no. 1, pp. 3–100 (in Russian).

3. Popova S. N. Control over asymptotic invariants for the systems with almost periodic coefficients. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki [Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science], 2008, no. 2, pp. 117–118 (in Russian). https://doi.org/10.20537/vm080238

4. Kurzweil J., Veivoda O. On the periodic and almost periodic solutions of a system of ordinary differential equations. Czehoslovak Mathematical Journal, 1955, vol. 5, no. 3, pp. 362–370 (in Russian). https://doi.org/10.21136/cmj.1955.100152

5. Massera J. L. Observaciones sobre les soluciones periodicas de ecuaciones diferenciales. Bol. de la Facultad de Ingenieria Montevideo, 1950, vol. 4, no. 1, pp. 37–45 (in Spanish).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3