Statistics of pulse enrgy fluctuations in a solid-state Raman laser

Author:

Chulkov R. V.1,Korozhan O. P.1,Orlovich V. A.1

Affiliation:

1. B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus

Abstract

In this paper, we present the results of the study of the statistics of pulse energy fluctuations in a Raman laser under optical pump by the multimode nanosecond pulses. A system of coupled differential equations for slowly varying envelopes of the pump field and first three Stokes lines was integrated numerically with taking into account spatial inhomogeneity of the pump beam, spontaneous noise, and optical feedback. Data of the numerical simulation revealed a sharp increase in the fluctuation amplitude in the nonlinear regime of Raman frequency conversion when the optical length of the Raman cavity was matched with the cavity length of the multimode pump laser. At a mean 1st Stokes conversion efficiency of 3.5–3.8 %, the calculations showed an increase in the coefficient of variation (CV) of a random value from 9 % to 118 %. In the linear regime of Raman frequency conversion, when the conversion efficiency was 0.2–0.03 %, a further increase in the CV value up to 270–500 % was predicted. It is also numerically shown that the fluctuation statistics under the conditions of the cavity length matching is essentially non-Gaussian and described by the L-type probability density distributions (PDDs) with long tails and maxima located near zero. The numerical data were quantitatively confirmed by an experiment for a Raman laser on a barium nitrate crystal operated near the Raman threshold, when the 1st Stokes conversion efficiency did not exceed 0.3 %. A Raman cavity was formed by two flat mirrors providing a double-pass pump configuration. The Raman laser was excited by the linearly polarized frequency-doubled radiation of a Q-switched Nd:YAG laser generating multimode pulses with a duration of 7–8 ns. A Raman laser operating regime characterized by the hyperexponential PDDs with CVs reaching 480 %, which is 2–2.5 times higher than those observed earlier for the single-pass conditions of stimulated Raman scattering, was realized.

Publisher

Publishing House Belorusskaya Nauka

Subject

Computational Theory and Mathematics,General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3