Study of Dust Particles on Solar Mirrors for Measurement of Soiling by Specular Reflectance and Imaging Assessment

Author:

Le Baron EstelleORCID,Grosjean AntoineORCID,Disdier Angela

Abstract

During the life time of Concentrated Solar Power plants (CSP), optical performances of solar mirrors are affected by soiling phenomena and surface degradations. In order to provide an adequate cleaning strategy, operators must determine the performance loss induced by soiling. Several commercial instruments already exist to measure optical reflectance, but they are dedicated to a single wavelength range or angle, contact and punctual measurements or to laboratory analyses. CEA has developed a new kind of sensor to measure separately the loss of specular reflectance thanks to a CCD camera and photodiodes. In this study, we compared the cleanliness factor calculated with the specular reflectance measured by commercial devices with the image processing performed with our equipment on different artificially soiled solar mirrors. The aim is to ensure that different levels of dirt on the mirrors can be easily assessed with a camera and image processing. We conclude that the level of soiling and the calculation of the percentage of dirty surface are similar to the measurement of the absolute reflectance for all the mirrors tested. These combinations of non-contact, automated, fast and precise measurement with image processing are reproducible for all levels of soiling.

Funder

European Commission

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3