Author:
Jia Yahui,Wen Chunnan,Liu Miao,Ruan Yuan,Qian Yanyan,Ma Bingji,Wang Li
Abstract
AIM: The physicochemical properties of polysaccharides and changes in the glycoside composition under different processing conditions of Rehmannia glutinosa were studied. METHODS: High-pressure processing temperature, processing time, processing frequency, and thickness of fresh Rehmannia glutinosa slices were taken as factors, and the contents of polysaccharides, catalpol, and rehmannioside D were taken as evaluation indexes. The physicochemical properties and the inhibition of α-glucosidase were characterized via ion chromatography, Fourier transform infrared spectroscopy, and environmental scanning electron microscopy. RESULTS: The parameter values for the highest polysaccharide content were as follows: processing temperature of 110 ℃, processing time of 4 h, processing frequency of 2 times, and slice thickness of 1.0–1.5 cm. The parameter values for the highest α-glucosidase inhibition rate were as follows: processing temperature of 120 ℃ and processing time of 2 h. The surface morphology of polysaccharides from Rehmannia glutinosa showed irregular fragments, and glucose and galactose were dominant. The α-glucosidase inhibitory activity of polysaccharides from processed Rehmannia glutinosa reached 60% at a low concentration of 0.05 mg/mL.
Publisher
Universe Scientific Publishing Pte. Ltd.
Reference30 articles.
1. Jia J H, Chen J F, Wang G L, et al. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomedicine & Pharmacotherapy. 2023; 168: 115809. doi: 10.1016/j.biopha.2023.115809
2. Li J N, Long H, Cai Z, et al. Study on anti-fatigue effect of Rehmannia glutinosa polysaccharide. Biological Chemical Engineering. 2021; 7(5): 71-74. doi: 10.3969/j.issn.2096-0387.2021.05.018
3. Qian Y, Wang L, Zhang Z, et al. Physical-chemical properties of heteropolysaccharides from different processed forms of Rehmanniae Radix. Process Biochemistry. 2022; 121: 481-492. doi: 10.1016/j.procbio.2022.07.032
4. Wang L, Wen C, Qian Y, et al. Preparation Method of High-Molecular-Weight Rehmannia Polysaccharide and Method for Steaming Fresh Rehmannia Under High Pressure to Obtain Prepared Rehmannia Root. CN112870271A, 1 June 2021.
5. Gao Y, Hu H, Yang H, et al. Study on industrialization process of prepared Radix Rehmanniae. Guangzhou Chemical Industry. 2021; 49(15): 101-103. doi: 10.3969/j.issn.1001-9677.2021.15.030