Abstract
Utilizing synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) to capture intermediates has significantly enhanced the understanding of catalytic reactions. This commentary introduced the structure of SVUV-PIMS and then revisited an excellent work in science that utilized SVUV-PIMS to elucidate the mechanisms of dimethyl oxalate (DMO) hydrogenation into ethylene glycol over copper nanoparticles (Cu NPs) supported on dealuminated Beta zeolite (Beta-deAl). The observation of key intermediates, particularly (CHO)Cu1* species, using SVUV-PIMS provided real-time, in-situ insights into the dynamic behavior of Cu NPs in DMO hydrogenation. The findings highlighted the formation of a silanol nest and the presence of metallic Cu and Cu2O phases following methanol treatment. This treatment helped maintain a small nanoparticle size, resulting in high EG yields and prolonged catalyst stability. Additionally, their catalyst addressed common issues, such as silica leaching, which often compromises the durability of CuSiO2-based catalysts. By re-examining their work, this commentary underscores the transformative potential of SVUV-PIMS in catalysis research, and the operando adaptation of intermediates in reactions is invaluable for developing more efficient and durable catalysts.
Publisher
Universe Scientific Publishing Pte. Ltd.