Comparison of Freeze-Out versus Grind-Out Ice Crystals for Generating Ice Accretion Using the ICE-MACR

Author:

Neuteboom Martin,Fleurent-Wilson Eric,Chalmers Jennifer

Abstract

<div class="section abstract"><div class="htmlview paragraph">Since the introduction of ice crystal icing certification requirements [<span class="xref">1</span>], icing facilities have played an important role in demonstrating compliance of aircraft air data probes, engine probes, and increasingly, of turbine engines. Most sea level engine icing facilities use the freezing-out of a water spray to simulate ice crystal icing conditions encountered at altitude by an aircraft in flight. However, there are notable differences in the ice particles created by freeze-out versus those observed at altitude [<span class="xref">2</span>, <span class="xref">3</span>, <span class="xref">4</span>]. Freeze-out crystals are generally spherical as compared to altitude crystals which have variable crystalline shapes. Additionally, freeze-out particles may not completely freeze in their centres, creating a combination of super-cooled liquid and ice impacting engine hardware. An alternative method for generating ice crystals in a test facility is the grinding of ice blocks or cubes to create irregular shaped crystals. These grind-out particles have a different morphology to atmospheric crystals. but are fully glaciated and their irregular shapes may better approximate the fracture dynamics of atmospheric crystals when impacting engine hardware. The National Research Council (NRC), in collaboration with Transport Canada Civil Aviation (TCCA), have studied the differences between using freeze-out generated ice crystals and grind-out ice crystals to generate ice accretion in a compressor rig: the ice-crystal environment-modular axial compressor rig (ICE-MACR) in the NRC’s altitude icing wind tunnel (AIWT). Comparison of the freestream ice crystal morphologies is presented as well as the fractured particle characteristics downstream of a two-stage compressor within the compressor annulus. Qualitative and quantitative comparisons are made of the accretion behaviour resulting from the two ice-crystal generating methods. It was found that while particle morphology differs considerably between freeze-out and grind-out before rotor impact, fractured particle size and accretion within the rig was similar for both methods for the limited range of overlapping conditions that could be produced in the test facility.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NRC’s ICE-MACR 2018-2023: What Has Been Learned So Far;SAE Technical Paper Series;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3