Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

Author:

Josefsson Erik,Urquhart Magnus,Sebben Simone

Abstract

<div class="section abstract"><div class="htmlview paragraph">Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance.</div><div class="htmlview paragraph">In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used. It was found that the belt width can substantially alter the flow field, mainly locally around the wheels but also away from the belts. The drag coefficient increased by approximately 0.010 <i>C<sub>D</sub></i> for the narrow belts, mainly due to differences in the vortex structures downstream of the front wheels, resulting in larger low-energy regions for the narrow belts. Numerical simulations showed that the change in vortex structures was caused by leakage flows from the gaps between the WDUs and the stationary floor. Comparing two rim designs, it was found that the belt width did not only affect the absolute force measurements but also the drag delta between them.</div><div class="htmlview paragraph">Although the parasitic lift forces increase with the wider belts, a correction is necessary regardless. Hence, given the fact that the interfering leakage flows are further away from the tyres with the wider belts, they should be the preferred choice, allowing more accurate investigations of wheel aerodynamics.</div></div>

Publisher

SAE International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3