Anomaly Detection Using Convolutional Neural Network and Generative Adversarial Network

Author:

Mohanan Amritha,Gangadharan Santha Sarika,Padmanabha Rajeswari Priyanka Pillai,Padathil Veerendrakumar Praveen,Menon Sam Titus

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the automotive embedded system domain, the measurements from vehicle and Hardware-In-Loop are currently evaluated against the testcases, either manually or via automation scripts. These evaluations are localized; they evaluate a limited number of signals for a particular measurement without considering system-level behavior. This results in defect leakage. This study aims to develop a tool that can notify anomalies at the signal level in a new measurement without referring to the testcases, considering a more significant number of system-level signals, thereby significantly reducing the defect leakage. The tool learns important features and patterns of each maneuver from many historical measurements using deep learning techniques. We tried two CNN (convolution neural network) models. The first one is a specially designed CNN that does this maneuver classification and class-specific feature extraction. The second model we tried is the FCN (Fully Convolutional Network) Classification model. CNN-based architecture can be trained faster than the recurrent neural network (RNN) model because it utilizes features extracted from the input data. A Generative Adversarial Network (GAN) model is used in series with the CNN model to clone each of these maneuvers for predicting the anomalies. During the testing phase, the CNN model maps the test measurement to the most similar maneuver from the list of already learned maneuvers, followed by the GAN model outputting the anomalies, if any. To validate the tool, 12 measurements, each of 3 different maneuvers, were selected from an old and matured function in the brake system. The class-specific feature-based classification model resulted in 33% accuracy. However, with the Fully Convolutional Network Classification model, we got 100% accuracy. We injected anomalies in one CSV file for testing purposes. The anomaly detection module predicted all the anomalies correctly. Our future goal is to implement this model at the deployment level.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3